jueves, 25 de septiembre de 2014

FORMA FACTORIZADA Y FORMA CANÓNICA DE LA PARÁBOLA

Forma factorizada

Toda función cuadrática se puede escribir en forma factorizada en función de sus raíces como:
 f(x) = a(x - x_1)(x - x_2) \,
siendo a el coeficiente principal de la función, y x_1 y x_2 las raíces de f(x). En el caso de que el discriminante Δ sea igual a 0 entonces x_1 = x_2 por lo que la factorización adquiere la forma:
 f(x) = a(x - x_1)^2 \,
En este caso a x_1 se la denomina raíz doble, ya que su orden de multiplicidad es 2. Si el discriminante es negativo, las soluciones son complejas, no cabe la factorización.2

Forma canónica

Toda función cuadrática puede ser expresada mediante el cuadrado de un binomio de la siguiente manera:
 f(x) = a (x - h)^2 + k \,
siendo a el coeficiente principal y el par ordenado (h;k) las coordenadas del vértice de la parábola.

No hay comentarios:

Publicar un comentario